Resources
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
Enabling The SPI Port
The SPI port needs to be enabled in Rasbian before it can be used. See here.
Leave the IO pins used unconfigured (do not set them as inputs or outptus).
Using The SPI Port With The BCM2835 library by Mike McCauley
This uses the same library as used for the IO pins – see here.
//Setup SPI pins bcm2835_spi_begin(); //Set CS pins polarity to low bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, 0); bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS1, 0); //Set SPI clock speed // BCM2835_SPI_CLOCK_DIVIDER_65536 = 0, ///< 65536 = 262.144us = 3.814697260kHz (total H+L clock period) // BCM2835_SPI_CLOCK_DIVIDER_32768 = 32768, ///< 32768 = 131.072us = 7.629394531kHz // BCM2835_SPI_CLOCK_DIVIDER_16384 = 16384, ///< 16384 = 65.536us = 15.25878906kHz // BCM2835_SPI_CLOCK_DIVIDER_8192 = 8192, ///< 8192 = 32.768us = 30/51757813kHz // BCM2835_SPI_CLOCK_DIVIDER_4096 = 4096, ///< 4096 = 16.384us = 61.03515625kHz // BCM2835_SPI_CLOCK_DIVIDER_2048 = 2048, ///< 2048 = 8.192us = 122.0703125kHz // BCM2835_SPI_CLOCK_DIVIDER_1024 = 1024, ///< 1024 = 4.096us = 244.140625kHz // BCM2835_SPI_CLOCK_DIVIDER_512 = 512, ///< 512 = 2.048us = 488.28125kHz // BCM2835_SPI_CLOCK_DIVIDER_256 = 256, ///< 256 = 1.024us = 976.5625MHz // BCM2835_SPI_CLOCK_DIVIDER_128 = 128, ///< 128 = 512ns = = 1.953125MHz // BCM2835_SPI_CLOCK_DIVIDER_64 = 64, ///< 64 = 256ns = 3.90625MHz // BCM2835_SPI_CLOCK_DIVIDER_32 = 32, ///< 32 = 128ns = 7.8125MHz // BCM2835_SPI_CLOCK_DIVIDER_16 = 16, ///< 16 = 64ns = 15.625MHz // BCM2835_SPI_CLOCK_DIVIDER_8 = 8, ///< 8 = 32ns = 31.25MHz // BCM2835_SPI_CLOCK_DIVIDER_4 = 4, ///< 4 = 16ns = 62.5MHz // BCM2835_SPI_CLOCK_DIVIDER_2 = 2, ///< 2 = 8ns = 125MHz, fastest you can get // BCM2835_SPI_CLOCK_DIVIDER_1 = 1, ///< 1 = 262.144us = 3.814697260kHz, same as 0/65536 bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_128); //Set SPI data mode // BCM2835_SPI_MODE0 = 0, // CPOL = 0, CPHA = 0, Clock idle low, data is clocked in on rising edge, output data (change) on falling edge // BCM2835_SPI_MODE1 = 1, // CPOL = 0, CPHA = 1, Clock idle low, data is clocked in on falling edge, output data (change) on rising edge // BCM2835_SPI_MODE2 = 2, // CPOL = 1, CPHA = 0, Clock idle high, data is clocked in on falling edge, output data (change) on rising edge // BCM2835_SPI_MODE3 = 3, // CPOL = 1, CPHA = 1, Clock idle high, data is clocked in on rising, edge output data (change) on falling edge bcm2835_spi_setDataMode(BCM2835_SPI_MODE0); //(SPI_MODE_# | SPI_CS_HIGH)=Chip Select active high, (SPI_MODE_# | SPI_NO_CS)=1 device per bus no Chip Select //Set with CS pin to use for next transfers bcm2835_spi_chipSelect(BCM2835_SPI_CS0); //Transfer 1 byte //uint8_t data; //data = bcm2835_spi_transfer((uint8_t)0x55); //Transfer many bytes char data_buffer[10]; int Count; for (Count = 0; Count < 10; Count++) data_buffer[Count] = 0x80 + Count; bcm2835_spi_transfern(&data_buffer[0], 10); //data_buffer used for tx and rx //Return SPI pins to default inputs state //bcm2835_spi_end();
Using The SPI Port Without the BCM2835 Library
This working example is based on the excellent example here.
#include <fcntl.h> //Needed for SPI port #include <sys/ioctl.h> //Needed for SPI port #include <linux/spi/spidev.h> //Needed for SPI port #include <unistd.h> //Needed for SPI port #include <stdio.h> #include <stdlib.h> #include <string> #include <iostream> #include <unistd.h> #include <cstring> int spi_cs0_fd; //file descriptor for the SPI device int spi_cs1_fd; //file descriptor for the SPI device unsigned char spi_mode; unsigned char spi_bitsPerWord; unsigned int spi_speed; //*********************************** //*********************************** //********** SPI OPEN PORT ********** //*********************************** //*********************************** //spi_device 0=CS0, 1=CS1 int SpiOpenPort (int spi_device) { int status_value = -1; int *spi_cs_fd; //----- SET SPI MODE ----- //SPI_MODE_0 (0,0) CPOL = 0, CPHA = 0, Clock idle low, data is clocked in on rising edge, output data (change) on falling edge //SPI_MODE_1 (0,1) CPOL = 0, CPHA = 1, Clock idle low, data is clocked in on falling edge, output data (change) on rising edge //SPI_MODE_2 (1,0) CPOL = 1, CPHA = 0, Clock idle high, data is clocked in on falling edge, output data (change) on rising edge //SPI_MODE_3 (1,1) CPOL = 1, CPHA = 1, Clock idle high, data is clocked in on rising, edge output data (change) on falling edge spi_mode = SPI_MODE_0; //----- SET BITS PER WORD ----- spi_bitsPerWord = 8; //----- SET SPI BUS SPEED ----- spi_speed = 1000000; //1000000 = 1MHz (1uS per bit) if (spi_device) spi_cs_fd = &spi_cs1_fd; else spi_cs_fd = &spi_cs0_fd; if (spi_device) *spi_cs_fd = open(std::string("/dev/spidev0.1").c_str(), O_RDWR); else *spi_cs_fd = open(std::string("/dev/spidev0.0").c_str(), O_RDWR); if (*spi_cs_fd < 0) { perror("Error - Could not open SPI device"); exit(1); } status_value = ioctl(*spi_cs_fd, SPI_IOC_WR_MODE, &spi_mode); if(status_value < 0) { perror("Could not set SPIMode (WR)...ioctl fail"); exit(1); } status_value = ioctl(*spi_cs_fd, SPI_IOC_RD_MODE, &spi_mode); if(status_value < 0) { perror("Could not set SPIMode (RD)...ioctl fail"); exit(1); } status_value = ioctl(*spi_cs_fd, SPI_IOC_WR_BITS_PER_WORD, &spi_bitsPerWord); if(status_value < 0) { perror("Could not set SPI bitsPerWord (WR)...ioctl fail"); exit(1); } status_value = ioctl(*spi_cs_fd, SPI_IOC_RD_BITS_PER_WORD, &spi_bitsPerWord); if(status_value < 0) { perror("Could not set SPI bitsPerWord(RD)...ioctl fail"); exit(1); } status_value = ioctl(*spi_cs_fd, SPI_IOC_WR_MAX_SPEED_HZ, &spi_speed); if(status_value < 0) { perror("Could not set SPI speed (WR)...ioctl fail"); exit(1); } status_value = ioctl(*spi_cs_fd, SPI_IOC_RD_MAX_SPEED_HZ, &spi_speed); if(status_value < 0) { perror("Could not set SPI speed (RD)...ioctl fail"); exit(1); } return(status_value); } //************************************ //************************************ //********** SPI CLOSE PORT ********** //************************************ //************************************ int SpiClosePort (int spi_device) { int status_value = -1; int *spi_cs_fd; if (spi_device) spi_cs_fd = &spi_cs1_fd; else spi_cs_fd = &spi_cs0_fd; status_value = close(*spi_cs_fd); if(status_value < 0) { perror("Error - Could not close SPI device"); exit(1); } return(status_value); } //******************************************* //******************************************* //********** SPI WRITE & READ DATA ********** //******************************************* //******************************************* //data Bytes to write. Contents is overwritten with bytes read. int SpiWriteAndRead (int spi_device, unsigned char *data, int length) { struct spi_ioc_transfer spi[length]; int i = 0; int retVal = -1; int *spi_cs_fd; if (spi_device) spi_cs_fd = &spi_cs1_fd; else spi_cs_fd = &spi_cs0_fd; //one spi transfer for each byte for (i = 0 ; i < length ; i++) { memset(&spi[i], 0, sizeof (spi[i])); spi[i].tx_buf = (unsigned long)(data + i); // transmit from "data" spi[i].rx_buf = (unsigned long)(data + i) ; // receive into "data" spi[i].len = sizeof(*(data + i)) ; spi[i].delay_usecs = 0 ; spi[i].speed_hz = spi_speed ; spi[i].bits_per_word = spi_bitsPerWord ; spi[i].cs_change = 0; } retVal = ioctl(*spi_cs_fd, SPI_IOC_MESSAGE(length), &spi) ; if(retVal < 0) { perror("Error - Problem transmitting spi data..ioctl"); exit(1); } return retVal; }
Useful Resources
http://hertaville.com/2013/07/24/interfacing-an-spi-adc-mcp3008-chip-to-the-raspberry-pi-using-c/
Issues
"Error – Problem transmitting spi data..ioctl: Invalid argument
Due to changes in the underlying library the spi_ioc_transfer struct now needs to be initialised to NULL, and a hacky fix is to add this to the beginning of the for loop (this has been done in the code example above)
memset(&spi[i], 0, sizeof (spi[i]));